85 research outputs found

    A Monte Carlo study of the three-dimensional Coulomb frustrated Ising ferromagnet

    Full text link
    We have investigated by Monte-Carlo simulation the phase diagram of a three-dimensional Ising model with nearest-neighbor ferromagnetic interactions and small, but long-range (Coulombic) antiferromagnetic interactions. We have developed an efficient cluster algorithm and used different lattice sizes and geometries, which allows us to obtain the main characteristics of the temperature-frustration phase diagram. Our finite-size scaling analysis confirms that the melting of the lamellar phases into the paramgnetic phase is driven first-order by the fluctuations. Transitions between ordered phases with different modulation patterns is observed in some regions of the diagram, in agreement with a recent mean-field analysis.Comment: 14 pages, 10 figures, submitted to Phys. Rev.

    Ocean Colour remote sensing in the Southern Laptev Sea: evaluation and applications

    Get PDF
    Enhanced permafrost warming and increased arctic river discharges have heightened concern about the input of terrigeneous matter into Arctic coastal waters. We used optical operational satellite data from the Ocean Colour sensor MERIS onboard the ENVISAT satellite mission for synoptic monitoring of the pathways of terrigeneous matter in the southern Laptev Sea. MERIS satellite data from 2006 on to 2011 were processed using the Case2Regional Processor, C2R, installed in the open-source software ESA BEAM-VISAT. Since optical remote sensing using Ocean Colour satellite data has seen little application in Siberian Arctic coastal and shelf waters, we assess the applicability of the calculated MERIS parameters with surface water sampling data from the Russian-German ship expeditions LENA2010 and TRANSDRIFT-XVII taking place in August and September 2010 in the southern Laptev Sea. The surface waters of the southern Laptev Sea are characterized by low transparencies, due to turbid river water input, terrestrial input by coastal erosion, resuspension events and, therefore, high background concentrations of Suspended Particulate Matter, SPM, and coloured Dissolved Organic Matter, cDOM. The mapped calculated optical water parameters, such as the first attenuation depth, Z90, the attenuation coefficient, k, and Suspended Particulate Matter, SPM, visualize resuspension events that occur in shallow coastal and shelf waters indicating vertical mixing events. The mapped optical water parameters also visualize that the hydrography of the Laptev Sea is dominated by frontal meanders with amplitudes up to 30 km and eddies and filaments with diameters up to 100 km that prevail throughout the ice-free season. The meander crests, filaments and eddy-like structures that become visible through the mapped MERIS C2R parameters indicate enhanced vertical and horizontal transport energy for the transport of terrigenous and living biological matter in the surface waters during the ice-free season

    A review on substances and processes relevant for optical remote sensing of extremely turbid marine areas, with a focus on the Wadden Sea

    Get PDF
    The interpretation of optical remote sensing data of estuaries and tidal flat areas is hampered by optical complexity and often extreme turbidity. Extremely high concentrations of suspended matter, chlorophyll and dissolved organic matter, local differences, seasonal and tidal variations and resuspension are important factors influencing the optical properties in such areas. This review gives an overview of the processes in estuaries and tidal flat areas and the implications of these for remote sensing in such areas, using the Wadden Sea as a case study area. Results show that remote sensing research in extremely turbid estuaries and tidal areas is possible. However, this requires sensors with a large ground resolution, algorithms tuned for high concentrations of various substances and the local specific optical properties of these substances, a simultaneous detection of water colour and land-water boundaries, a very short time lag between acquisition of remote sensing and in situ data used for validation and sufficient geophysical and ecological knowledge of the area. © 2010 The Author(s)

    Spectra of a shallow sea-unmixing for class identification and monitoring of coastal waters

    Get PDF
    Ocean colour-based monitoring of water masses is a promising alternative to monitoring concentrations in heterogeneous coastal seas. Fuzzy methods, such as spectral unmixing, are especially well suited for recognition of water masses from their remote sensing reflectances. However, such models have not yet been applied for water classification and monitoring. In this study, a fully constrained endmember model with simulated endmembers was developed for water class identification in the shallow Wadden Sea and adjacent German Bight. Its performance was examined on in situ measured reflectances and on MERIS satellite data. Water classification by means of unmixing reflectance spectra proved to be successful. When the endmember model was applied to MERIS data, it was able to visualise well-known spatial, tidal, seasonal, and wind-related variations in optical properties in the heterogeneous Wadden Sea. Analyses show that the method is insensitive to small changes in endmembers. Therefore, it can be applied in similar coastal areas. For use in open ocean situations or coastal or inland waters with other specific inherent optical properties, re-simulation of the endmember spectra with local optical properties is required. However, such an adaptation requires only a limited number of local in situ measurements

    Unsteady Effects of Shock Wave Induced Separation

    No full text
    The aim of this series is to publish promptly and in detailed form new material from the field of Numerical Fluid Mechanics and Multidisciplinary Design ..
    • …
    corecore